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Standing Stokes waves of maximum height 
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Department of Mathematics, Massachusetts Institute of Technologyt 

(Received 10 June 1972 and in revised form 18 June 1973) 

An analytic expression is found for an infinite subset of the coefficients of the 
perturbation expansion. They are the coefficients of the terms most rapidly vary- 
ing at  each order, which are also the first terms in the expansion of each Fourier 
coefficient. The sum of these terms gives a nonlinear approximation to the 
solution. At greatest height this approximation has a profile with a 90' corner. 

1. Introduction 
Although Stokes waves have been discussed for a long time, it has usually been 

the progressing wave that has been considered. The standing wave, by contrast, 
has received little attention. No accepted proof exists showing that the largest 
standing wave must have a corner of some fixed angle, nor any approximation 
technique based upon an expansion about such a corner. All that remains is the 
small amplitude expansion. This is an unreliable tool for obtaining behaviour at 
large amplitude. Penney & Price (1952) computed this expansion to five terms, 
and from this predicted a 90" corner. Taylor (1953) performed experiments and 
concluded that this was approximately correct, although he doubted their 
reasoning. Edge & Walters (1964) later made similar experiments, and found 
that the angle at  the corner varied near 90". 

The solution for the wave height y can be written in the form 

where 

is of order en when E: is small. It is assumed that there is no problem with reson- 
ance. 

By considering the partial sum that contains only the yno terms, it is possible 
to solve for yno for all n. (In fact this operation is carried out in a transformed 
frame of reference.) These terms are the first in the expansions of each harmonic 
amplitude yn. They are also the terms most rapidly varying at  each order of the 
expansion in powers of 6. The explicit result is 

yno = nn-121-n cosn t/n!. (1.2) 

t Present address. Applied Mathematics Division, D.S.I.R., Wellington, New Zealand. 
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This analytic result for an infinite subset of the expansion coefficients is new. 
At the very least, it provides a useful check on numerical work. By the same tech- 
nique, a similar result can be found for the progressing wave, and was found by 
Wilton (1914) directly from the recurrence relation. 

The sum yo of all these terms gives an approximation to the standing-wave 
solution. It represents a wave with a 90” corner at  greatest height. 

2. The equations of motion 
Take units of length and time such that the gravitational acceleration is 

unity and the wavelength of linearized waves equals 27~. The equations of irrota- 
tional motion of a heavy inviscid fluid are, at  the surface y = y(x ,  t ) ,  the Bernoulli 

q&+ y + +(V#)2 = 0 

Yt + #%YZ - +I/ = 0. 

condition 

and the kinematic condition 

Below the surface, is harmonic, and at great depth velocities vanish. An arbi- 
trary function of time, in the Bernoulli condition, has been absorbed into $. 
We refer to x, y space as ‘physical space’. 

These equations contain the wave height y as one of the unknowns, and so are 
transcendentally nonlinear. This can be improved by an analytic transformation 
of the fluid volume into a fixed half-space. The equations have ‘only’ a poly- 
nomial nonlinearity, and manipulations become easier. 

2 = x+iy  = Z(Q, 5 = [+iy, (2-3) 
Let 

with 2 N c a t  great depth and 2 so chosen that the surface y = y(x ,  t )  is given by 
7 = 0. 

The transformation must be analytic and invertible inside the fluid: 

&Z/dC * 0, 7 < 0. (2-4) 

We shall consider only waves symmetric about the crest. This crest can be 
chosen to be at < = 0. Then either both, or neither, of (x, y) and ( -x, y) are on 
the surface. This implies that 

where * denotes a complex conjugate. 

Y be the real and imaginary parts of 2, 

Z*(Q = - Z( - C ) ,  (2.5) 

We now find the equations of motion in the new frame of reference. Let X and 

and 

The transformation is analytic, so 

v p = o ,  r )<  0; (2.8) 

also Vg@+O as ~ - + - c o .  (2.9) 

V, denotes the gradient operator in $, 7 space. 
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NOW Z(!L t) = 2, zt + 2, ct = 0, ct = - zt/zc, 
and taking real and imaginary parts yields 

595 

Then for the Bernoulli condition 
(2.10) 

0 = $ t + ~ + i ( V $ ) ’  = Y + c D , + c D ~ ~ t + ~ , T t + 4 ( V g ~ ) ~  I d [ / U I 2 ,  

qq+ Y)+@,(X,Y,- Y,x,)+(s,(Y~x,-xsyt)+*(v,@)2 = 0. (2.1’) 

The kinematic condition states that a particle on the surface remains on it. That is, 

qxt-x,y,+ @= = 0. (2.2’) 

We now put W = @ + W, the complex potential, and Z = {+ iP. Expressing 

(1 - iF’*) {( 1 + iP’) (F  + Wt) - iW’&) + &Wr W’* + C . C .  = 0 

the two surface conditions in terms of W and E’ and their conjugates gives 

(Bernoulli), (2.1”) 

(2.2”) 

where a prime denotes ala<. Both of these apply at 7 = 0. Inside the fluid, both 
W and f are analytic and bounded functions of c. 

i W’ -&( 1 - iP’*) + C.C. = O (kinematic), 

3. The approximation technique 
The Iinearized form of the surface conditions (2.i”) and (2.2”) is 

W,+F = 0, iW’-&= 0, 
with the solution 

P =  ecoste-fc, W = -esinte-fc. (3.1) 

These are the first terms in an expansion in powers of the amplitude e (the 
Stokes expansion) : 

00 m 

F = cf,sa, w = c w,en, 
n=O n=O 

f, and w,, the nth Fourier coeificients, are of order en when e is small. The fnm 
and w,, are given recursively by substitution of this expansion into the equations 
of motion. The symmetry condition implies that all the fnm and w,, are real. 
This form of expansion assumes that there is no problem with resonance. 

38-2 
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When these expansions are substituted into the surface conditions (2.1") 
and (2.27, there result expressions of the form 

m 

n,m=O 
x Tnmsn+2m(8n+8*n) = 0, (3.3) 

and the T,, depend on the f,, and w,, and their time derivatives. The equations 
for the f,, and w,, are just T,, = 0. 

Now the T,, depend only upon the fno and w,,, since it is only these terms 
that contain expressions enf2V3n with n = 0, or the power of E equal to the power 
of 8. 

Consider the effect of multiplying an analytic and a conjugate term. The powers 
ofs of the two will add, but their frequencies subtract. Thus terms with m > 0 only 
can be so generated. 

Thus, if we omit all conjugate terms from the boundary conditions, we have 

m 

n,m.=O 
TA,En+2m8n = 0 (3.4) 

but TAo = Trio, i.e. the dependence of T,, upon the fit, and wno is unchanged. 
Consequently, by solving the simpler (because analytic) surface condition (3.4), 
we can find fno and wno for all n. 

So let F, and W ,  be defined by 

These satisfy the surface conditions (2.1") and (2.2") with the conjugate terms 
omitted: 

(3-6) i w; - aF,/at = 0, 

F, and W ,  are the fist terms in a systematic expansion, which is more fully 
described in appendix A. We shall in fact only solve for F, and W,, and so it is 
important to see what they are. This initial approximation can be viewed in two 
ways. 

The first is that it approximates the Fourier coefficients f, and w, by the f is t  
terms fno@ and wnosn of their expansions in powers of B .  This is done for all n. 

The second interpretation is more interesting. The expansion (3.2) can also 
be written as 

m m 

n=l  n=l  
P = x Ena,(8), W = I= Enbn(8), 
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where an and b, are polynomials of degree n. Fo and W, contain the 8" term in 
a, and b,: the highest power of 0 at each order of B. Restated, F, and W,  contain, 
at each order of€, those terms most rapidly varying in space. No approximation is 
made on the time dependence. 

4. Solution of the approximate equations 

exact solution : 
One of the major reasons for using this method is that (3 .6)  and (3 .7)  have an 

Fo = H ( P ) ,  (4 .1)  

W, = -tan tH(p) ,  (4-2) 

p = E cost e-ic, (4.3) 

where p H , - H ( l + p H , ) = O ;  H - p  as p u 0 .  (4 .4)  

This can be checked by direct substitution. Rearranging (4 .4 ) )  

dp/p = ( l / H -  1) dH, (4 .5 )  

lnp = In H - H + constant, 

p = He-H. (4.6)  

a, 

By Lagrange's formula H =  X dnpn) 
n=O 

and hence 
nn-l 

fno = - cosnt foralln > 0. 
n! (4 .8)  

From (4.5), H has a maximum value of 1. This is attained when p = e-l, and so 
E = e-1 is the radius of convergence of the series (4.7).  Near this singularity, i.e. 
for H-1 small, 

p = He-H = [1+ (H- l ) ]  e-1 [ l  - (H- l )  + $(H-1)2].  . . 
= e-l[i - $(H-l)z + ...I, 

H = 1 - [ 2 ( l - e p ) ] 2 + . . .  (p near e-l) .  (4.9) 

H has a square-root singularity at p = e-1. This corresponds to a surface with a 
90' corner, as is shown below. 

Expressions corresponding to these can be found in physical space. There too 
there is an expansion in powers of E ,  and the terms most rapidly varying at each 
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order are given by substituting To into the transformation 

x = <+iTo = <+iH(ee-iccost), 

i ( 6 - z )  = H(ecoste-ic) = Ee-cccoste-R 

= ee-G cos t eiK-4 = e e-i" cos t. (4.10) 

On the surface, < = [ = real. Taking real parts of (4.10) gives 

y = ee~costcosx, 

ye-" = ecostcosx, 

y = H(ecos tc0sx) .  (4.11) 

This describes a wave that is smooth for e < e-l. When e = e-l, there is a 90' 
corner a t  cost cos x = 1.  Suppose that e = e-1 and x and t are small, then 

y = H{e-l[i - t( t2 + x 2 ) ] )  

= 1-(t2+x2)i  +... by (4.9), (4.12) 

so that at  t = 0, y = I - 1x1, a 90" corner. 

attains instantaneously a profile with a 90" corner. 
This wave is smooth everywhere, except that a t  maximum amplitude it 

Corresponding to (4.10) is an expression for the potential: 

W, = -tantF, = -ee-izsint 

or in real terms $,, = -esintcosxe" (4.13) 

compared with To = e cos t e-i". (4.14) 

Equations (4.13) and (4.14) can be derived by transforming (3.6) and (3.7) into 
equations with z and t as dependent variables. Let 

W ( L t )  = V(x,t) and f (Qt )  = h(z,t), 

then = 0, 
.a% ah, 

az at at 
t - - - = o  - (4.15) 

with solutions (4.13) and (4.14). It should be emphasized that (4.13) and (4.14) 
are not linear approximations. They contain all the most rapidly varying terms. 
The fact that they stop a t  O(e) asserts that these terms vanish a t  all higher orders, 
i.e., that at order e2 there are no ecZia terms, and so on. By comparison, the expres- 
sion (4.11) for the surface elevation does contain terms of all orders. Equations 
(4.15) can also be derived directly, without the use of the 6 plane. But the non- 
linearity is so awkward, in this formulation, that it is essentially impossible 
to go any further, to  do the analysis that comes below. 

Equation (4.11) gives, for the free surface, 
m %n-l 

y =  -€coSntCOSnX 
n=l  n! 

03 %n-l 
= en cosn t ( 21-n cos nx + lower harmonics). (4.16) 

n=1 n 
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FIGURE 1. Lowest approximation, wave of greatest height: y = H(e-l  cos 2). Circles 
represent points from Taylor's experiments, plotted with crests coinciding. 

Hence the coefficient of cosnx, at  order en, is 
nn-l 

Yno = 21-" - cos" t. 
n! 

(4.17) 

This result, giving an infinite subset of the expansion coefficients, is new. A 
similar result for the progressing wave, 

fno = nn-l/n!, corresponding to y = F(e 00s x), 

can be found by the same technique. The expression for thef,, was found by 
Wilton (1914) from the recurrence relation, although he did not find the expres- 
sion for their sum. 

The expression (4.17) shows that Penney & Price made a mistake at fifth order. 
They had, at  lowest order, = A sin at cos x. 

So, in their notation, the correct coefficient of cos 5x, to order A5, is 

2-4- 5 4  (A sin v t )5  = A5- 125 (sin 5at-5 sin 3at+ 10 sin d). (4.18) 
5! 6144 

Penney & Price's calculations were checked by Tadjbakhsh & Keller (1960) as 
far as third order and found to be correct. 

Taylor (1953) performed experiments that produced waves with 90" corners. 
These fitted Penney & Price's results well except, naturally, at  the corner. Edge 
& Walters (1964) also performed experiments and found that the angle was near 
go", but was not fixed. They obtained some waves with angles of 85". 

Taylor's experimental profiles have values of HIL  = heightlwavelength of 
0.22-0.24. The profile corresponding to our lowest approximation has 

HIL  = 0.203. 

Figure 1 above shows this profile, with some of Taylor's results plotted. The 
shapes are similar, with the 10-20 yo difference in height. Higher-order approxi- 
mations, while they would not alter the 90' corner, would of course change the 
shape of t,he wave somewhat. 
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One defect of this expansion is that desirable physical properties, such as that 
particles on the surface stay on it, or that volume is conserved, are satisfied at 
each order of the expansion not exactly, but only to that order. Thus the curve in 
figure 1 has more volume in the crest than has been taken out of the trough: 
F, conserves volume only to order 8. The rationale of the expansion is purely 
mathematical, and does not have a physical basis. 

5. Behaviour near the corner 

shows that it is not a good approximation in the vicinity of the corner. 
Despite the fact that F, gives the correct corner angle, more careful analysis 

For E = e-1 and t and 5 small 

F, = H ( B  cos t e-ic) = H[e-l( 1 - $2 - i5)]] 
= l-[P+2i[]i .... (5.1) 

Thus F, has a similarity scale C/t2  near the corner. But this is not the correct 
scale. 

It is easier to work in terms of W(5, t )  and Z(5, t )  rather than Wand P. Consider 
a wave of maximum amplitude. At time t = 0, it has a corner at  5 = 0. As t 
approaches zero, assume an inner scale contracting with time and an inner solu- 
tion, namely 

2 = t G ( g ,  W = t"(g), 5 = tsg.  (5 .2 )  

At time t = 0, the surface has a corner of angle, say, ncc. Then Z has a singularity 
of order a: Z - 6 as 5 --f 0. The inner solution must match to this as [+ GO: 

3 - p  as %+a, (5.3) 

then 2 - t'(Ct+)", 

so r = ccs. (5.4) 

Equation (5.3) is the boundary condition at  infinity on z. Similarly, with the 
potential, if 

then 5 

W - p  as [-+a 

w - t e a ' s  a'. 

At time t = 0 the wave attains its maximum elevation, and is instantaneously 
at  rest. The velocity potential should vanish, so 

q = sa'+1. 

The boundary conditions at  y = 0 are 
(5.5) 

Z'Z'*(Jq- i2) + W'Z,( - Z'*) + *W'W'* + C.C. = 0, (5.6) 

iW'+iZ,( -Z'*)+c.c. = 0, (5.7) 

with both 2 and W analytic below. The boundedness condition at  infinity is 
lost in this local analysis. It could only be applied to an outer solution and 
influence Z and W through matching. 
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Derivatives transform appropriately: 

Using a prime here for a/a& the surface conditions are, at  = 0, 

Z ' Z ' * [ q ~ + t r - ~ f l ( - i Z ) ] + r w ' z (  -z'*) +&@'w'*+c.c. = 0, (5.8) 

t-+liW'+i&( -Z'*) + C.C. = 0, (5.9) 

with w and fl analytic below. A non-trivial balance requires 

q = 2 r - 1 ,  q = r + l .  

The four equations for r ,  q, s, a and a' then give 

T = 2, q = 3, a = a', sa = 2. (5.10) 

Unfortunately, neither the corner angle na nor the similarity scale 8 - s  is 
determined. One constraint sa = 2 relates them. For a 90" corner, a = i, and the 
similarity scale at  the corner is [P4, rather than the scale &z of fo. 

The inner problem defined by (5.8) and (5.9) does not have a simple solution. 
It is, however, fairly easy to  solve it in the outer limit [+ co, and thus obtain 
some constraints any matching outer solution must satisfy. 

h, y0('{)"7 (5.11) 

2 N ia0(i[)" + ia, (5.12) 

as [ +. co, where yo, uo and u1 are real constants. In  the kinematic equation (5.9), 
the term 2( - z'*) + C.C. vanishes at highest order, and it is necessary to have two 
terms in the expansion (5.12). Inserting this in (5.9) gives 

yo = 2a0a,. (5.13) 

The fact that the highest-order term here vanishes means that the term Z,( - Z'*) 
in (5.7) is not as singular as it appears. The leading singular term iv(i[)" in Z 
interacts not with itself but with the considerably more innocuous term als a 
constant. Written in C: space, the expansion (5.12) is Z = iuo(ig)a+ialt2+ ... as 
6, t -+ 0 with &-" -+ 00. The singular corner term iao(ig)a interacts at highest 
order with just the simple function of time id2. This is a consequence of the fact 
that 2 enters (5.7) in the form (time derivatives of 2) (space derivatives of 2). 
The first term io,(ig)a in this expansion represents the corner at  t = 0, and is 
independent of time, This is important when it comes to constructing a better 
approximation. 

Let 

The Bernoulli condition (5.8) simplifies to 

yo = -gl, so u1 = -4. (5.14) 

Equation (5.14) implies that the acceleration of the surface and fluid near the 
corner is - 1, or in dimensional terms, - g.  This is hardly a surprise. 

For the surface 
2 = t2Z([ )  = igo(i[)a - p,  
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or x = -cr,Psin$na, y = cr0~cos+na-$t2, 

so a 2 g p  = - 1. 

For the flow field: 

The corresponding velocities are 

w N t3yo(i& N -t(r,(ig)" - i tx.  

horizontal velocity = 0, vertical velocity = t. 

These results are independent of a. 
At t = 0,  the fluid is stationary with unit acceleration downwards. The flow 

consists ofa straight up and down motion. There is at highest order no singularity 
in the flow field. This contrasts with the progressing wave, where the singular 
behaviour of the flow forces the 120' angle. The corner is a streamline of the pro- 
gressing wave, and the flow must consequently be singular. The corner shape for 
the standing wave is the locus of the highest points attained by particles on the 
surface of the fluid. This locus can be singular, while the particle paths are con- 
siderably better behaved. It is probably because of this that the similarity 
analysis does not determine the corner angle. The weak nature of the flow near 
the corner probably also implies that the shape of the corner can be easily dis- 
turbed. This would explain the results of Edge & Walters. 

It is possible to construct, by a rather involved technique with similarities to 
PLK, an expansion where the first term has a 90" corner and the correct similarity 
scale. This is outlined in appendix B, and given in full in Grant (1972). 

I am considerably indebted to Professor D. J. Benney for his help and guidance. 

Appendix A 
F, and W, depend on c and 0 only in the combination 6 = €6. Higher terms in 

the expansion are found by expressing everything in terms of 6 and E and ex- 
panding in powers of c2, holding [ constant: 

m m 

F = fnm@2mOn = 6 " K ( 6 )  9 (A1) 
n,m=O n=O 

This gives the expansion of an analytic term. For a conjugate term 

(A 4) fnmEn+2mo*n = fnm62n+2m(-n. 

For example, to evaluate the kinematic condition to order €2 we have 

i W' = k[W[ = (1 + klE.2) ([Kt +82@qC), 

E = S2f iOt  6-1 $- e f o 1  t, 

Ft = F0t + c2Flt, - iF'" = c 2 f i , P ,  



Standing waves of maximum height 603 

0 = i W’ - i W’* -4(l - iF’”) -FF( 1 +iF’) 
= (1  +k,E2) ( t&+e2tyg)  +€2Wl,t-1-(F,t+E21i’lt) (1 +e”fiok-l) 

- . “ f l o t k l  +fOlC) (1 + m o t )  
= (two[ - 4J + .2{k,5W,g + w 10 t- 1 - ~ o t f l o 5 - 1 -  (fiotk-”folt) (l+tFog) 

+ (OK[ - 4t)h (A 5) 

kl is determined by the requirement that the solution be analytic in 6. This 
equation contains E-l terms, and at order E~~ there will be terms up to t-“. All 
of these cancel automatically, and so the equations are analytic in the dependent 
variables E and g. 

Appendix B. Outline of a better approximation 
Section 5 showed that F, cannot be a good approximation near the corner, for 

it does not even have the correct similarity scale there. The reason Fo fails near 
the corner is that the approximation defining it is a bad one for the kinematic 
equation 

(B 1) iW’-~(l-iF’*)+c.c.  = 0, 

while iW;-Fo,+c.c. = 0. (B2) 

Near the corner, 4; N c-4, and the omitted term dominates those retained. 
A better approximation can be defined by 

IF, = H ( h ) ,  = - (y(t)/P(t)) H ( h ) ,  h = €/@) 8. (B 3) 

The profile at  maximum amplitude is unchanged, but it is approached at  a dif- 
ferent rate. At maximum amplitude, near the corner 

h N 

and so IF, - 1 - (sic+ & 4 ) 4  (B 4) 

showing the correct similarity scale. 
Instead of (BZ), lF0 and ‘W0 satisfy 

i ~ W ; - ~ F o t [ i + S (  --il&*)] = 0) 
where S is defined by 

S(Q) = G(e2/,&,,,, t ,  E )  given G(B, t,s). (B 6) 

S(G) is a function of time only, and represents G evaluated near the corner. 
The reasons for this choice are as follows. 

(i) There are exact solutions for lF, and lW0. 
(ii) IFo and lW, have the correct similarity scale near the corner. 
(iii) In  fact, IF, and lW0 are correct t o  highest order in the matching limit 

near the corner approaching the corner with the similarity variable ctk4 large. 
(iv) It is suggested by a PLK-type argument to make succeeding terms in the 

expansion less singular. Following the expansion as in appendix A, the omitted 
term [IFot( - ilF;*)] in (B 2 )  generates a forcing term, at order eZn, 

J ,  = E2n/3nh-ntfnOt( - ilF;*). (B 7)  
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This is singular at  h = A,,, = e-l, and is the most singular forcing term. We 
cancel this singularity by modifying the forcing term to 

Adding to the basic equation the negative of all the terms so added gives the 
expression (B5). This is described in full detail in Grant (1972). The most im- 
portant result is that it modifies Po only by replacing cost by P(t) = cost + O(e2) ,  
and that the profiles are not altered, but only the speed at which the wave passes 
through them. 
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